
.

“,...,,, sscL-415
,,Y., FERMILAB Conf-911150

2 Superconducting Super Collider Laboratory
2 “...., ,.. . ..‘.
g .,.....,, ./
v ‘..t, ,..I
m

u-l4
“:...:,

“ti
~/I.‘-

3
’ :. .,, ”

“2
.”

.:
% E ,, ;. “’ I :,, $..‘. ~..~ j

1.:,

Lattice Parameters
Database and Operational

Simulation at FNAL and SSCL

E. Barr, S. Peggs, L. Michelotti, A. Russell,
S. Saritepe, C. Trahern, and J. Zhou

May 1991

To be published as a Confemm Record, IEEE, ~Vew York SSCL-415
FERMILAB Conf-91/150

Lattice Parameters Database and Operational Simulation
at FNAL and SSCL’

Eric Barr

Department of Computer Science
‘The Cniversity of California at Berkeley

Bancroft Way
Berkeley, California 94720

Steve Peggs, Leo Michelotti, Al Russell, Selcuk Saritepe

Fermi National Accelerator Laboratory
P.O. Box 500

Batavia, Illinois 60510

and

C. G. Trahern and J. Zhou

Superconducting Super Collider Laboratoryi
2550 Beckleymeade Avenue

Dallas, TX 75237

May 1991

: Presented at the 1991 IEEE Particle Accelerator Conference, San Francisco. CA, day G-9, 1991.
’ Operated by the Universities Research Association. Inc., for the I,.!+. Department of Energy under Contract

30. DE-AC02-SSER40486.

Lattice Parameters Database and Operational Simulation at FN.4L and SSCL

Eric Barr, Department of Computer Science, U.C. Berkeley, Berkeley, California,
Steve Peggs, Leo Michelotti, Al Russell, Selcuk Saritepe,

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510,
C. G. Trahern. J. Zhou, Superconducting Super Collider Laboratory, 2550 Beckleymeade Ave.. Dallas, Texas 75237’

.1 bstracl

A collaboration has been formed at FNAL and SSCL to
develop software tools for operational simulation of exist-
ing and planned accelerator systems. The toolset is orga-
nized around an accelerator lattice description maintained
by a commercial database management system. This note
present,s a brief description of the tools presently avaiiable
for public use.

I. INTRODUCTION

It is essential for the operational simulation of accel-
erator systems to maintain the most accurate representa-
tion of the accelerator lattice possible. This representation
should also be in a form which allows the user community
ease of access. Whether the user wishes to understand
general problems of accelerator operation, investigate var-
ious correction schemes for error compensation or study
the geometrical and mechanical layout of the accelerator,
a centralized resource of lattice designs that is available
over computer networks can guarantee that everyone will
use the same lattice description.

The Superconducting Super Collider will be the largest
and most complex accelerator system to be constructed,
and it is a formidable tnsk to describe and understand
110th this system and the other accelerators in the injector
complex realistically. For this reason an effort to create a
structure for lattice descriptions which would allow ease of
access in a controlled manner was undertaken at the SSC
Central Design Group. A relational database management
system (RDBMS) was judged to be the appropriate tech-
nology in which to implement this strategy. The announce-
ment of this system was first described in [I]. Since that
time. this system has been successfully used at both SSCL
and FT\‘AL. In addition further development of that sys-
tem has occurred which we beliew can be usefully shared
with the rest of the accelerator community.

II. LAMBDA

LAMBDA stands for “Loosely Associated Modules for
Beamline Design and Analysis”. It is a collaborative ef-
fort between FNAL and SSCL to provide lattice tools. in
the form of independent code modules. in an environment
centered around a RDBMS. LA.MBDA provides

‘Operated by the tinivemities Research Association inc.. for the U.S.
Department of Energy under Contract Nos. DCACOZ-76CH03000
and DE-AC02-s9ER40486

i) (1 set of data slmctures, database interfaces, and oppli-
cation software modules,
ii) detailed documentation descrzbing ihe package.

The most current public versions of supported
LAMBDA software are identically available on discs at
the SSC and at FNAL. Version 1.0 of the documentation is
nearing completion. with an expected public release date of
July 1991. It will be available via surface mail by contact-
ing either Steve Peggs (peggs&alvin.fnal.gov) or Gary
Trahern (trahern@pear.ssc.gov).
Philosophies

A major problem with most conventional beamline de-
sign and analysis codes stems from the fact that the differ-
ent “tools” or “functionalities“ correspond to subroutines
or functions in a single, large, multi-purpose code. De-
spite the best intentions of the author(s), it is inevitably
difficult for a user to understand or develop tools in such
an over-centralized environment. Breaking these packages
down into several independent code modules provides for
efficient maintenance of existing tools. and encourages the
development of new tools. This emphasis on “Loosely As-
sociated Modules” is roughly in accordance with the UNIX
philosophy of single purpose modules for single purpose
t,asks.

It is only possible to write short. independent, modules
if the author does not have to worry about beamline data
Input. LAMBDA modules are linked to the flatin lattice
input module. and assume that FLAT data structures are
filled and available to them. This is the glue that “loosely”
holds the modules together. The flatin module is relatively
short. compared to the thousands of lines of input code
often found in large programs, because the input format
is very simple. This is possible because the user who
needs to manipulate complex hierarchical lattice objects
edits the lattice in relational database tables, not in the
beamline file. The FLAT input file is generated, in turn,
by the dbsf code which reads database tables and generates
ASCII files in any one of four optional formats (see section
III B).

New contributors are welcome to join the collaboration,
so long as they agree to maintain and document their mod-
ules. Although modules remain the intellectual property
of the independent author, a reasonable level of sensitiv-
ity to the opinions of the collaboration and other users
is expected. Authors are strongly encouraged to use C
or C++; but other standard languages such as Fortran 77
are acceptable. Although the RDBMS in use at FNAL and
SSCL is SYBASE, the proprietary dependence on this par-

tic&r commercial product has been kept to a minimum.
Only one routine in dbsf uses SYBASE specific statements.
It is planned to replace these references with Standard
Query Language (SQL) statements. with the next release
of SYBASE. When this is done, LAMBDA will perform
with any RDBMS which supports embedded SQL wlis.

If no RDBMS is available to a potential LAMBDA user;
the uer must manipulate beamlines by editing FLAT
ASCII files, or by finding another way to fill FLAT struc-
tures. At present only ASCII files are used for communi-
cation between modules. Compatible binary options are
planned for the two critical modules, dbsf and flatin, in a
later LAMBDA release (see section IV A). The LAMBDA
documentation is broken into three sections - Introduction
and Overview, Database Interfaces. and Application Mod-
ules. Brief abstracts of the chapters in the second and
third sections of the first release of the documentation are
presented in the next two sections of this paper.

III. LAMBDA DATABASE INTERFACES

:l. Lattice siructures in the database
The thirty or so lattice databases currently in use at

FNAL and SSCL, describing most of the accelerators in
design and use at those labs. each consist of several ta-
bles of the same structure and design. These tables build
up a (logically) hierarchical structure. from the “atomic”
length and strength parameters, through magnet elements.
to beam lines constructed from other beam lines. Optional
tables allow aliasing from one set of element names to an-
other or to define geometrical descriptions of the magnets
as rectil&ar boxes. Now in use for about four years, these
data structures are very stable. but are still open to well
deliberated modifications agreed upon by the collabora-
tion.
B. dbsf - Data Base to Several (Latttce) Formats

Contemporary beamline design and analysis codes use a
variety of ASCII formats. One format used by many codes
(for example, MAD, TEAPOT, COMFORT, and DIMAD)
isoften referred to as “standard format”[Z]. The code dbsf,
which has been in use for about three years, optionally
produces ASCII output in STANDARD, FLAT, MAGIC,
or SYNCH formats. As such, it provides a connection to
existing codes which are outside the LAMBDA package.
Planned developments for later LAMBDA releases of dbsf
include the use of multiple strength tables to represent
dynamic optical tuning. dbsf is the only LAMBDA code
that is SYBASE specific.
C. SQL procedures

.4bout twenty Standard Query Language procedures
have been written by various individuals to aid in the day-
to-day manipulations of lattice databases. They perform
single tasks, and are usually only a few lines long. Proce-
dures exist, for example, to create the (empty) data base

tables, to set up recommended permissions and protec-
tions, to copy between tables and ASCII files, and to build
an index table-of lattice objects found in the other tables.

The work of many authors is collected and present in a
single place.

IV. LAMBDA APPLICATION hlODULES

.4. FLAT structures and flatin
The FLAT structures that the Aatin module produces

from dbsf FLAT ASCII output have evolved, in the last
three years. to a well designed and stable state. They are
available to all of the application modules. and form the
link between the database world and the I(::,dar comput-
ing environment. Despite the stability of FL.-X structures,
their crucial role as the glue that holds LAhlBDA together
means that they necessarily remain open to minor modifi-
cations requested by a consensus of the collaboration.

The incorporatior of the FLAT structures into a bi-
nary data discipline known as the Self Describing Stan-
dard (SDS) should be available shortly. The SDS dataset
is created by modules that form a part of the Integrated
Scientific Tool Kit (ISTK)[3] and provides a sophisticated
implementation for binary datasets in an architecture in-
sensitive manner. The SDS dataset can then be used by
other application programs which can interpret the data
standard.

For example, a graphical interface to the FLAT st,ruc-
ture is being planned which uses the SDS implementation.
This CASE tool will allow the user to browse the lattice
structure while maintaining the hierarchical information of
the relational database tables.

! ma- h.as , m 6Ea i M
,_.---.

, / \
\\

I
:

f
i 1 !
, ! I / \ , I\\, /’
I zi ~‘xL->.s ._._ _ *.,a ,“’
~ c i I,?..
Figure 1: SSCL Injector complex as rendered by 02

B. survey
This module generates geometric survey information

from a FLAT beamline. Coordinates are in meters or feet,
with or without an initial displacement or rotation. survey
aiso produces three projections of the beam line, in TOP-
DRAWER graphical format. including representations of

2

magnets as rectilinear boxes. The survey module has been // Construct phase space map
in use in two major revisions for about three years. A.propagate(x);

At SSCL the information generated from the lattice
database and the survey module has been incorporated
into a graphical interface known as OZ. OZ is an object-

oriented interactive graphical environment based on the X
Window and ISTK tool sets. OZ provides a visualization of
the entire SSCL accelerator complex in the site Cartesian
coordinate system (Figure 1) and is available to any work-
station on the network running X Windows. Although 02
stands outside the LAMBDA toolset as an SSCL specific
code. it uses the FLAT data structures filled by flatin as
well as those created by the survey module.
c. twiss

// Write coefficients to a file
x.peekAt(fileName[Z]);

At the time of writing, the library of beamline elements
is being completed, and MXYZPTLK is being upgraded
for greater functionality.

V COXCLUSIONS

This module generates optical parameters - beta func-
tions, dispersion, and phases - of a named beamline.
Length units are meters. Output is in ASCII files as nu-
merical tables, and as TOPDRAWER graphics (figure 2).
The first version of this module has just been completed
at the time of writing.

LAMBDA provides a flexible and structured environ-
ment in which to develop software tools for any lattice de-

pendent calculations. The basic elements have been in use
for nearly 4 years, and the tools have shown their ability
both to economize the work necessary to maintain consis-
tent lattice descriptions and to produce timely operational
simulation results. \Ve hope the accelerator community
wilt give the LAMBDA tootset a wider distribution and
begin to develop other codes within this structure.

References

[I] E. Barr, S. Peggs, and C. Saltmarsh, SSC-N-606,
March 1989.

[Z] D.C. Carey and F. Christopher I&in, Proc. of the
SSC Summer Study, p. 389. Snowmass, 1984.

[3] ISTK, unpublished internal documentation at SSCL,
C. Sattmarsh, M. Allen and S. Acharya.

[4] L. Michelotti, “MXYZPTLK: A Practical, User
Friendly C++ Implementation of Differential Alge-
bra: User’s Guide”. FN-535. 1990.

II - [5] L. Michelotti, “C++ Objects for Beam Physics“,

/ d.., .- IEEE-PAC these proceedings, 1991.
0 53 :m IP mo 254 ~8

seh Urplli ,011

Figure 2: Example of Topdrawer output from twiss mod-
ule.

D. Map pvriter
MapWriter reads a FLAT format file produced by dbsf,

constructs a polynomial map corresponding to asingte pass
in the represented beamline. and writes its coefficients, in
ASCIl. to a second file. Coded in C++, MapWriter uses
Lhe MXYZPTLK[4) and beamtine objects described else-
where in these proceedings[5] (see especially the discus-
sions of(i) beamtine::propagate functions and (ii) .physics
files). With these. a first, prototype version of MapWriter
was written - apart from preliminary boiter plate. such as
#include lines and querying for options consisting of two
executable lines:

heamiine A (fiIeName[l]);
DAVector x;

,

